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Wald’s formula for black hole entropy [1–4], when applied to extremal black holes, leads

to the entropy function formalism [5, 6]. Since extremal black holes have an AdS2 factor in

their near horizon geometry [7, 8], one expects that the underlying quantum gravity theory

in this background will have a dual description in terms of a conformal quantum mechanics

(CQM) living at the boundary of AdS2 [9–20]. In [19] it was shown that in the classical

limit, when Wald’s formula is expected to be valid, the Wald entropy computed from the

entropy function can be interpreted as the logarithm of the ground state degeneracy of this

dual CQM in a fixed charge sector. This suggested that the latter should be taken as the

definition of the entropy of extremal black holes in the full quantum theory.

In this paper we shall test this proposal for a special class of black holes, — the BTZ

black holes [21]. The latter are rotating black hole solutions in AdS3 characterized by their

mass M and angular momentum J . We shall assume that the BTZ black hole solution

has been embedded in a string theory with certain amount of supersymmetry where we

have sufficient control on the system [22, 23]. In particular in this case via AdS3/CFT2

correspondence [24–27] one can identify the BTZ black holes as states in the superconformal

field theory (CFT) living on the boundary of AdS3, with the identification1

L0 =
M + J

2
, L̄0 =

M − J

2
. (1)

Extremal supersymmetric BTZ black holes, corresponding to M = ±J , correspond to

states with L̄0 = 0 and L0 = 0 respectively. For definiteness we shall consider black holes

with M = J , ı.e. with L̄0 = 0. In order that the state preserves supersymmetry it must

belong to the Ramond sector of the anti-holomorphic part of the superconformal algebra

of the CFT, so that the condition L̄0 = 0 forces the state to be in the supersymmetric

ground state of the Ramond sector [23, 28, 29].

The identification of the BTZ black hole with a state in the dual CFT suggests a

natural definition of the entropy of this black hole, — it is simply the logarithm of the

degeneracy of the corresponding states in the CFT [23]. For large L0 where we can use

Cardy formula to estimate the degeneracy of states, the entropy defined this way agrees

with the one computed via Wald’s formula [30–33]. Our goal will be to compare the

definition of the quantum entropy of the black hole based on the degeneracies in the dual

CFT with the one suggested by the AdS2/CFT1 correspondence, where we identify the

entropy as the logarithm of the degeneracy of certain states in the dual CQM. Thus for

this comparison we need to study the relationship between the CQM and the CFT. The

comparison is not completely straightforward since the CFT lives on the boundary of the

AdS3 space in which the black hole is embedded, whereas the CQM lives on the boundary

of AdS2 that appears in the near horizon geometry of the black hole.

The general BTZ black hole solution in an AdS3 space with scalar curvature −6/l2 is

given by

ds2
3 = −

(ρ2 − ρ2
+)(ρ2 − ρ2

−)

l2ρ2
dτ2 +

l2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2 + ρ2

(
dy −

ρ+ρ−
lρ2

dτ

)2

, (2)

1L0 and L̄0 denote the Virasoro generators on the cylinder; thus in their definition we include the

contributions −c/24 and −c̄/24 of the central charges.
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where τ denotes the time coordinate, ρ is the radial variable, y is the azimuthal angle with

period 2π and ρ± are parameters labelling the black hole solution satisfying ρ+ > ρ−. M

and J are determined in terms of ρ±, but the precise relation requires the knowledge of

higher derivative terms. Nevertheless the extremal limit always corresponds to ρ+ → ρ−.

Following [19] we take this limit by first defining new variables λ, t, r, φ and R through

ρ+−ρ−= 2λ, ρ−ρ+ = λ(r−1), τ = l2 t/(4λ), y = φ+
l

4λ

(
1 −

2λ

ρ+

)
t, ρ+ =

lR

2
, (3)

and then taking λ → 0 with t, r, φ and R fixed. In this limit the metric (2) takes the form

ds2
3 =

l2

4

[
−(r2 − 1)dt2 +

dr2

r2 − 1
+ R2

(
dφ +

1

R
(r − 1)dt

)2
]

. (4)

The metric (4) is locally AdS3. Thus by the standard rules of AdS/CFT correspondence

any quantum theory of gravity in the background (4) has a dual (1+1) dimensional confor-

mal field theory. Since locally this AdS3 space is the same as the one in which we embed the

BTZ black hole, we expect that as a local field theory the (1+1) dimensional CFT living

on the boundary of the near horizon geometry of the BTZ black hole must be identical

to that living on the boundary of the AdS3 in which the full BTZ black hole solution is

embedded. The conformal structure of the two dimensional space in which the theory lives

will however be quite different for the theory dual to AdS3 and the one dual to the near

horizon geometry of the black hole.

Now via a dimensional reduction we can also regard the three dimensional metric (4)

as a two dimensional field configuration [9, 34]. For this we introduce a two dimensional

metric ds2
2, a scalar field χ and a gauge field aµ via the relation:

ds2
3 = ds2

2 + χ (dφ + aµdxµ)2 , (5)

where {xµ} for µ = 0, 1 represent the two dimensional coordinates (t, r). From the two

dimensional viewpoint, the background (4) takes the form

ds2
2 =

l2

4

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
, χ =

l2 R2

4
, aµdxµ =

1

R
(r − 1)dt . (6)

e ≡ Frt =1/R . (7)

This describes an AdS2 space-time with background scalar and electric field. Then via the

rules of AdS/CFT correspondence the theory is dual to a CQM living on the boundary of

AdS2. In particular we can relate the partition function of the quantum gravity theory on

AdS2 to the partition function of the CQM living on the boundary of AdS2 [19].

Since (4) and (6) describe the same background, the quantum theories dual to them

must also be identical. Consequently the CQM living on the boundary of (6) and the (1+1)

dimensional CFT living on the boundary of (4) are also different descriptions of the same

quantum theory. Our goal will be to exploit this equivalence to learn about the CQM living

on the boundary of AdS2.
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First consider the two dimensional viewpoint. The metric is that of AdS2, and

the boundary is located at r = r0. The induced metric, scalar and gauge field on the

boundary are

ds2
B = −

l2

4
(r2

0 − 1)dt2, χB =
l2R2

4
, at|B =

1

R
(r0 − 1) . (8)

We shall denote by Ht the total Hamiltonian of the CQM living on the boundary of AdS2

including the effect of the background gauge fields and by Q the conserved charge in the

CQM conjugate to the gauge field aµ in the bulk.2

We now turn to the three dimensional viewpoint. The dual (1+1) dimensional CFT

lives on the two dimensional boundary labelled by (t, φ) with induced metric

ds2
B =

l2

4

[
−(r2

0 − 1)dt2 + R2

(
dφ +

1

R
(r0 − 1)dt

)2
]

. (9)

To get some insight into this theory we introduce new coordinates

t̃ = R−1
√

r2
0 − 1 t, φ̃ = φ +

1

R
(r0 − 1)t , (10)

so that the metric (9) becomes

ds2
B =

l2R2

4
[−dt̃2 + dφ̃2] . (11)

Thus up to the overall scale factor the metric is the standard Minkowski metric, and the

space coordinate φ̃ is compact with period 2π. This gives a standard 1+1 dimensional

CFT on a cylinder, and the generators i∂et and −i∂eφ are identified as

i∂et = L0 + L̄0, −i∂eφ = L0 − L̄0 . (12)

In order that in the extremal limit we get a supersymmetric black hole, we impose Ramond

boundary condition along φ̃ on the anti-holomorphic part of the superconformal algebra.

In relating this (1+1) dimensional CFT to the CQM living on the boundary of AdS2,

we must identify the total Hamiltonian Ht of the CQM as the generator of t-translation in

the CFT. On the other hand the charge Q of the CQM can be identified as the generator

of φ translation. This gives

Ht = i∂t = iR−1
√

r2
0 − 1

∂

∂t̃
+ i

r0 − 1

R

∂

∂φ̃
= 2R−1r0L̄0 + R−1(L0 − L̄0) + O(r−1

0 ) ,

Q = −i∂φ = −i∂eφ = L0 − L̄0 . (13)

2In the analysis of [19] the Hamiltonian was split into two parts, one due to the background gauge fields

given by −atQ and the other due to the rest of the fields. We shall not need to use this split. Also the

analysis of [19] was carried out using the rescaled time coordinate et = r0t so that the metric on the boundary

remains finite in the r0 → ∞ limit, but the span of the time coordinate becomes infinite in this limit. This

corresponded to taking the infrared cut-off to infinity keeping the ultraviolet cut-off fixed. In this paper we

shall use the opposite (and more conventional) viewpoint where we take t as the time coordinate. In this

case the induced metric (8) on the boundary goes to infinity as r0 → ∞ but the range of t remains fixed.

This corresponds to taking the ultraviolet cut-off to zero keeping the infrared cut-off fixed.

– 4 –
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Thus in the r0 → ∞ limit, the only states with finite Ht eigenvalues are those with minimal

value of L̄0. Since we have Ramond boundary condition, the minimal value of L̄0 is 0. In

other words the states of the CQM living on the boundary of AdS2 are described by the

L̄0 = 0 states of the 1+1 dimensional CFT living on the boundary of AdS3.
3 In particular

the ground state degeneracy d(q) of the CQM, carrying a given charge q, can be identified

as the degeneracy of the states of the CFT which are in the ground state of the Ramond

sector in the anti-holomorphic sector and carries (L0 − L̄0) eigenvalue q. The former is the

quantity that appears in the definition of the entropy via AdS2/CFT1 correspondence [19]

whereas the latter appears in the definition of the entropy of the extremal BTZ black hole

via AdS3/CFT2 correspondence. Thus we see that the two definitions of entropy agree up

to subtleties involving ultraviolet cut-off of the CFT to be discussed below (29)

Using the identification of the CQM as a specific compactification of the CFT we can

compute the partition function of the theory. For this we make the Euclidean continuation

t → −iu. Regularity of the metric (4) (or (6)) at the horizon r = 1 requires u to be a

periodic coordinate with period 2π. From the point of view of the CQM, the partition

function of the theory will be given by Tr(e−2πHt). Using (13) this can be reinterpreted as

an appropriate trace over the Hilbert space of the (1+1) dimensional CFT dual to gravity

in AdS3. It is however instructive to do this computation directly in the CFT. For this we

note that under the replacement t → −iu the boundary metric (9) takes the form

ds2
B =

l2

4

[
(r2

0 − 1)du2 + R2

(
dφ −

i

R
(r0 − 1)du

)2
]

=
l2R2

4
[τ2

2 du2 + (dφ + τ1du)2] , (14)

where

τ1 = −
i

R
(r0 − 1), τ2 =

√
r2
0 − 1

R
. (15)

The metric is complex, but we can nevertheless go ahead and compute the partition func-

tion. Since u and φ both have period 2π, the partition function of the CFT with this

background metric will be given by

Z = Tr
[
e2πi(τ1+iτ2)L0−2πi(τ1−iτ2)L̄0

]
= Tr

[
e−4πr0R−1L̄0−2πR−1(L0−L̄0) + O(r−1

0 )
]

. (16)

This agrees with Tr(e−2πHt) with Ht given in (13). Eq. (16) again shows that in the

r0 → ∞ limit only the L̄0 = 0 states contribute to the trace. We also see that in this limit

the contribution to the partition function from states with a given charge Q = q is given by

d(q) e−2πeq , (17)

where q is the L0 − L̄0 eigenvalue, e = 1/R is the near horizon electric field, and d(q) is

the degeneracy of the states with charge q. Eq. (17) agrees with eq. (24) of [19], where

this result was also derived both from the microscopic computation in the CQM and a

computation of the partition function in the bulk theory in the semiclassical limit.

3This is in accordance with the expectation that the CQM dual to gravity in AdS2 is described by the

chiral half of the (1+1) dimensional CFT dual to gravity in AdS3 [9, 18, 34, 39].

– 5 –
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A similar dimensional reduction from AdS3 to AdS2 was carried out in [40] in the con-

text of extremal black holes in type IIA string theory on a Calabi-Yau manifold. However

in that paper the authors interpreted the φ coordinate as the euclidean time direction and

the u coordinate as the spatial circle, thereby arriving at a modular transformed version

of eq. (16). Since our goal is to identify the CQM living on the boundary of AdS2, we

must choose u as the time coordinate on the boundary of AdS3 so that it matches the time

coordinate of the CQM.

So far in our analysis we have considered neutral BTZ black holes. Let us now suppose

that the three dimensional theory has additional U(1) gauge fields A
(i)
M with Chern-Simons

action of the form

1

2

∫
d3x ǫMNP Cij A

(i)
M F

(j)
NP , F

(i)
NP ≡ ∂NA

(i)
P − ∂P A

(i)
N , (18)

where M,N,P run over the three coordinates of AdS3 and Cij are constants. Then we can

construct charged black hole solutions by superimposing on the original BTZ solution (2)

constant gauge fields:

A
(i)
M dxM = wi

[
dy −

1

l

ρ−
ρ+

dτ

]
. (19)

Here wi are constants. The term proportional to dτ has been chosen so as to make the

gauge fields non-singular at the horizon. Even though the gauge field strength vanishes,

the background (19) induces a charge on the black hole since the latter, being proportional

to δS/δF
(i)
ρt (in the classical limit), is given by CijA

(j)
y up to a constant of proportionality.

Taking the near horizon limit as in (3) we arrive at the background

ds2
3 =

l2

4

[
−(r2−1)dt2 +

dr2

r2−1
+R2

(
dφ+

1

R
(r− 1)dt

)2
]

, A
(i)
M dxM = widφ . (20)

In order to make contact with the two dimensional viewpoint we define two dimensional

gauge fields a
(i)
µ and scalar fields χ(i) via the relations:

A
(i)
M dxM = χ(i)(dφ + aµdxµ) + a(i)

µ dxµ , (21)

where aµ has been defined in (5). For the background (20) we have aµdxµ = 1
R

(r − 1)dt,

and hence [41]

χ(i) = wi, a(i)
µ dxµ = e(i)(r − 1)dt, e(i) ≡ −

wi

R
. (22)

e(i) is the near horizon electric field associated with the two dimensional gauge fields a
(i)
µ .

We shall now compute the partition function of the CQM living on the boundary of

AdS2 in the presence of these background gauge fields. This is equivalent to computing

the partition function of the CFT living on the boundary of the space-time given in (20).

Let (Jφ
(i), J

t
(i)) be the currents in the CFT dual to the gauge fields A

(i)
M in the bulk. Then

in the presence of the gauge field background given in (20) we have an insertion of

exp

[
iwi

∫
dtdφ

√
− det gJφ

(i)

]
, (23)

– 6 –
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in the boundary theory. To proceed further we need to assume some properties of the

currents J(i). Typically in AdS3/CFT2 correspondence the currents dual to gauge fields

are either holomorphic or anti-holomorphic depending on the sign of the Chern-Simons

term in the bulk theory [42]. We shall assume for simplicity that all our gauge fields are

dual to holomorphic currents; if the state carries charge associated with anti-holomorphic

currents then in general we shall not be able to satisfy the L̄0 = 0 condition and the analysis

will be more complicated.4 This gives a relation between Jφ
(i) and J t

(i). To determine this

relation we note from (14) that in the euclidean theory the holomorphic coordinate z is

given by φ+τ1u+iτ2u. Using the relation u = it and the values of τ1, τ2 given in (15) we get

z = φ −
1

R
t + O(r−1

0 ) . (24)

Requiring holomorphicity gives Jz
(i) = 0 since by virtue of current conservation ∂zJ

z
(i) = 0,

Jz
(i) would have described an anti-holomorphic current. Thus we have

Jφ
(i) −

1

R
J t

(i) = 0 . (25)

Substituting this into (23) and using the definition of the charge Q(i),

Q(i) =

∫
dφ

√
− det gJ t

(i) , (26)

we can express (23) as

exp

[
iwi

∫
dt Q(i)/R

]
= exp(2π wi Q(i)/R) = exp(−2π e(i)Q(i)) , (27)

where in the last step we have used (22). Insering this into (16) and using e = 1/R we get

Z = Tr
[
e−4πr0R−1L̄0−2π

P
I eIQI

]
, (28)

where the index I now runs over all the two dimensional gauge fields, — the one coming

from the dimensional reduction of the three dimensional metric as well as the ones coming

from the three dimensional gauge fields. From (28) we see that in the r0 → ∞ limit we

are still restricted to the L̄0 = 0 states. The contribution from the sector with charge ~q is

given by

d(~q) e−2π
P

I qIeI

, (29)

in agreement with eq. (24) of [19]. Here d(~q) denotes the degeneracy of L̄0 = 0 states in the

CFT carrying charge ~q. It can also be interpreted as the degeneracy of the lowest energy

states in the CQM carrying charge ~q.

One issue that we have not completely resolved is the following. From (11) we see

that in the (t̃, φ̃) coordinate system the conformal factor in front of the metric remains

4If there are gauge fields dual to anti-holomorphic currents, then an analysis identical to that for the

holomorphic currents shows that in the first term in the exponent in eq. (28), L̄0 will be replaced by

L̄0 +
P

′

i
wiQ(i), with the sum over i in

P
′ running over the anti-holomorphic currents. The finite part

retains the same form as the holomorphic currents, ı.e. −2π
P

′ e(i)Q(i), in agreement with the results of [19].

– 7 –
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finite as r0 → ∞, suggesting that we have a finite ultraviolet cut-off. In particular the

size of the φ̃ circle is of the order of the cut-off. We do not have a direct understanding of

the role of this cut-off in the CFT. However studying the effect of this cut-off in the bulk

gives us some insight. First of all note that in conventional AdS3, it is more natural to

define the partition function by summing over states of all charges with a fixed value of

the chemical potential. However in AdS2 the modes representing fluctuation of the total

charge represent non-normalizable deformations and hence it is more natural to define the

partition function by summing over a fixed charge sector [19]. Thus it would seem that

the effect of the finite ultraviolet cut-off in the CFT must be to restrict the Hilbert space

of a given CFT to a fixed charge sector. There are also other effects of this finite cut-off in

the bulk when we embed the BTZ black hole in a supersymmetric theory with additional

moduli scalars and vector fields. When we view the extremal BTZ black hole from the

point of view of the asymptotically AdS3 space-time by setting ρ+ = ρ− in (2) then the

ultraviolet cut-off is small compared to the size of the y circle since the latter approaches

∞ as ρ → ∞, but such asymptotic space-time could admit other multi-centered black hole

solutions [35]. On the other hand when we view the same extremal black hole from the

point of view of its near horizon geometry as in (4), then the size of the φ circle becomes

comparable to the ultra-violet cut-off, but this space-time geometry no longer admits the

other multi-centered black hole solutions in AdS2 since the values of the various scalar

fields are fixed at their attractor values.5 Thus it would seem that the ultraviolet cut-off

weeds out the contribution due to the multi-centered black hole configurations of the type

discussed in [35] from the CFT spectrum. In support of this speculation we would like to

note that for large R the size of the φ circle is large compared to the ultra-violet cut-off and

hence effect of the cut-off is expected to be small. This is precisely the region in which the

entropy of a single centered black hole gives the dominant contribution to the entropy [35].

Even though it is more natural to work in a fixed charge sector of AdS2, one can get

some insight into the OSV conjecture if one does sum over the contribution from different

charge sectors. After summing over charges the full partition function is given by

Z(~e) =
∑

~q

d(~q) e−2π~e·~q . (30)

For large charges the dominant contribution to this sum comes from ~q satisfying

∂ ln d(~q)/∂qI = 2πeI , in agreement with the classical relation between the electric field

and the charge. The right hand side of (30) has the flavor of the black hole partition func-

tion defined in [43]. On the other hand, using AdS/CFT correspondence, the left hand

side can be expressed as a functional integral over the fields in the bulk theory.6 Now, as

was shown in [19], after ignoring terms linear in r0 in the exponent — which must cancel

5Possible exceptions are multi-centered black holes with mutually local charges [11, 36, 37], ı.e. charges

satisfying (~qi · ~pj −~qj · ~pi) = 0 where (~qi, ~pi) denote the electric and magnetic charge vectors of the ith black

hole. But they do not contribute to the degeneracy [38, 67].
6Note that we have switched back from the three dimensional viewpoint to the two dimensional view-

point. The black hole partition function has been analyzed using AdS/CFT correspondence earlier (see

e.g. [44–46]). Also various other approaches to relating the entropy function formalism to Euclidean action

formalism and / or OSV conjecture can be found in [47–49]. The advantage of our approach lies in the fact

– 8 –
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among themselves – the classical result for the partition function in the r0 → ∞ limit is

given by

Z = e−2πf , (31)

where f is the classical Lagrangian density evaluated in the near horizon geometry. One

might expect that the effect of quantum corrections would be to replace the classical La-

grangian density by some effective Lagrangian density. As we shall now review, if we

assume that the effective Lagrangian density that contributes to the partition function is

governed only by the F -type terms, ı.e. terms which can be encoded in the prepotential

F [51], then Z takes the form predicted in the original OSV conjecture.

In N = 2 supergravity theories in four dimensions the information about the ‘F-type

terms’ can be encoded in a function F ({XI}, Â) — known as the prepotential – of a set of

complex variables XI which are in one to one correspondence with the gauge fields and an

auxiliary complex variable Â related to the square of the graviphoton field strength [51, 52].

Supersymmetry demands that F is a homogeneous function of degree two in its arguments:

F ({λXI}, λ2Â) = λ2F ({XI}, Â) . (32)

For a given choice of electric field one finds that the extremum of the effective Lagrangian

density computed with the F -term effective action occurs at the attractor point where [53–

64]

Â = −4w2, 4(w̄−1X̄I + w−1XI) = eI , 4(w̄−1X̄I − w−1XI) = −ipI . (33)

Here w is an arbitrary complex parameter and pI are the magnetic charges carried by the

black hole. These magnetic charges have not appeared explicitly in our discussion so far

because from the point of view of the near horizon geometry they represent fluxes through

compact two cycles and appear as parameters labelling the two (or three) dimensional field

theory describing the near horizon dynamics. The value of the effective Lagrangian density

at the extremum (33) is given by [64]

f = 16 i (w−2F − w̄−2F̄ ) . (34)

Note that (33) determines XI in terms of the unknown parameter w. However due to the

scaling symmetry (32), f given in (34) is independent of w. Using this scaling symmetry

we can choose

w = −8 i , (35)

and rewrite (33)), ((34) as

Â = 256, XI = −i(eI + ipI) , (36)

f = −
i

4
(F ({XI}, 256) − F ({XI}, 256)) . (37)

that since we apply AdS/CFT correspondence on the near horizon geometry, the chemical potentials dual

to the charges are directly related to the near horizon electric field, and hence, via the attractor mechanism,

to other near horizon field configuration. Furthermore the path integral needs to be performed only over the

near horizon geometry where we have enhanced supersymmetry and hence stronger non-renormalization

properties. The approach closest to ours is the one given in [40]; we shall comment on it later. A different

approach to deriving the OSV conjecture using AdS/CFT correspondence can be found in [50].

– 9 –
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Thus we have

Z(~e) = e−π Im F ({pI−ieI},256) . (38)

This is precisely the original OSV conjecture [43].

It has however been suggested in subsequent papers that agreement with statistical

entropy requires modifying this formula by including additional measure factors on the

right hand side of (38) [65–67]. A careful analysis of the path integral keeping track of the

holomorphic anomaly [68–70] may be able to reproduce these corrections, but we shall not

undertake that task here. Some of these corrections are in fact necessary for restoring the

duality invariance of the final result for the entropy [66].

Ref. [40] presented an argument as to why the partition function of type IIA string

theory on AdS2×S2×CY3 may be related to |Ztop|
2. In this analysis the divergence due to

the integration over AdS2 was regulated by supersymmetry. This argument led to ZAdS2 =

|Ztop|
2C , where C is a constant that was not calculated directly from first principles. In our

interpretation of the AdS2 partition function there is a clear understanding of the divergent

parts that is independent of supersymmetry, — terms linear in r0 in the exponent represent

the effect of ground state energy and the r0 independent piece encodes information about

the ground state spectrum. In particular the classical partition function calculated with

F-type terms in our approach agrees with |Ztop|
2 after we remove the terms linear in r0

from the exponent. Thus combining this regularization scheme with the analysis of [40]

may lead to a complete understanding of ZAdS2 . In particular there may be additional

finite pieces from the interference between order r0 divergent terms and order r−1
0 terms

which reproduce the measure factors described in [65–67].

Our attempt to justify the OSV conjecture from a macroscopic viewpoint makes it

clear that d(~q) appearing in the expression for the black hole partition function counts

only the states associated with single centered black holes.7 Thus OSV formula should

have nothing to say about the contribution to the entropy from the multi-centered black

holes. This in particular would explain why we do not see the effect of wall crossing or the

entropy enigma discussed in [67] in the OSV formula.

Acknowledgments

We would like to thank Andrew Strominger and Sandip Trivedi for useful discussions.

References

[1] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038] [SPIRES].

[2] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587

[gr-qc/9312023] [SPIRES].

[3] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

7An operational definition of such a d(~q) can be taken, for example, as the degeneracy of microstates

evaluated at the attractor point corresponding to ~q.

– 10 –

http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9307038
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://arxiv.org/abs/gr-qc/9312023
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9312023
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9403028


J
H
E
P
0
4
(
2
0
0
9
)
0
3
4

[4] T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity,

gr-qc/9502009 [SPIRES].

[5] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

[6] D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors,

JHEP 10 (2006) 058 [hep-th/0606244] [SPIRES].

[7] H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes,

Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

[8] P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in

higher dimensions, Phys. Rev. D 78 (2008) 044042 [arXiv:0803.2998] [SPIRES].

[9] A. Strominger, AdS2 quantum gravity and string theory, JHEP 01 (1999) 007

[hep-th/9809027] [SPIRES].

[10] M. Cadoni and S. Mignemi, Entropy of 2D black holes from counting microstates,

Phys. Rev. D 59 (1999) 081501 [hep-th/9810251] [SPIRES].

[11] J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation,

JHEP 02 (1999) 011 [hep-th/9812073] [SPIRES].

[12] M. Spradlin and A. Strominger, Vacuum states for AdS2 black holes, JHEP 11 (1999) 021

[hep-th/9904143] [SPIRES].

[13] J. Navarro-Salas and P. Navarro, AdS2/CFT1 correspondence and near-extremal black hole

entropy, Nucl. Phys. B 579 (2000) 250 [hep-th/9910076] [SPIRES].

[14] M. Caldarelli, G. Catelani and L. Vanzo, Action, Hamiltonian and CFT for 2D black holes,

JHEP 10 (2000) 005 [hep-th/0008058] [SPIRES].

[15] M. Cadoni, P. Carta, D. Klemm and S. Mignemi, AdS2 gravity as conformally invariant

mechanical system, Phys. Rev. D 63 (2001) 125021 [hep-th/0009185] [SPIRES].

[16] A. Giveon and A. Sever, Strings in a 2 − D extremal black hole, JHEP 02 (2005) 065

[hep-th/0412294] [SPIRES].

[17] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as

entanglement entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956]

[SPIRES].

[18] T. Hartman and A. Strominger, Central charge for AdS2 quantum gravity, arXiv:0803.3621

[SPIRES].

[19] A. Sen, Entropy function and AdS2/CFT1 correspondence, JHEP 11 (2008) 075

[arXiv:0805.0095] [SPIRES].

[20] M. Alishahiha and F. Ardalan, Central charge for 2D gravity on AdS2 and AdS2/CFT1

correspondence, JHEP 08 (2008) 079 [arXiv:0805.1861] [SPIRES].
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